skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khot, Krutarth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite its importance, a sophisticated theoretical study of thermal conductivity in bulk h-BN has been lacking to date. In this study, we predict thermal conductivity in bulk h-BN crystals using first-principles predictions and the Boltzmann transport equation. We consider three-phonon (3ph) scattering, four-phonon (4ph) scattering, and phonon renormalization. Our predicted thermal conductivity is 363 and 4.88 W/(m K) for the in-plane and out-of-plane directions at room temperature, respectively. Further analysis reveals that 4ph scattering reduces thermal conductivity, while phonon renormalization weakens phonon anharmonicity and increases thermal conductivity. Eventually, the in-plane and out-of-plane thermal conductivities show intriguing ∼T−0.627 and ∼T−0.568 dependencies, respectively, far deviating from the traditional 1/T relation. 
    more » « less